Enabling Dynamic Spectrum Allocation in Cognitive Radio Networks

Yuan Yuan
Advisor: Dr. William Arbaugh
Co-Advisor: Dr. Ashok Agrawala

Ph.D Defense
Computer Science Department
University of Maryland, College Park
Sept. 17, 2007
Unlicensed bands become over-crowed!
Spectrum Shortage

No Spectrum Available to Be Allocated in
Spectrum Allocation Table from 30 MHz to 30 GHz in US
Introduction & Motivation

Artificial Spectrum Shortage

Dissertation Focus:

* Tackle spectrum shortage problem by *improving* spectrum utilization and *efficiency*

Source:
Shared Spectrum Company

5% 30MHz ~ 30GHz
Limitations of Existing Spectrum Allocation Methods

Command & Control

- In US, FCC controls how to allocate the spectrum
- Extremely unbalanced spectrum utilization
 - TV bands: 15% in 2004*
 - Over-crowed unlicensed band

Fixed Channelization

- Further divide spectrum into fixed channels of equal bandwidth
- Limit network capacity and cause unfairness across a network

Source: FCC released date sheet
Dynamic Spectrum Allocation

- The key idea
 - Actively **detect** unused spectrum
 - Dynamically **create suitable # of channels**
 - Maximize spectrum utilization
 - Improve spectrum efficiency, minimize interference
 - Adaptively **adjust channel bandwidth**
 - Consider local user/traffic distribution

- New hardware support: **Cognitive Radio**
 - Unused band detection
 - Reconfigurable radio parameters
Apply Concept of Dynamic Spectrum Allocation

Exploit White Spaces in TV bands
- A complete hardware-software system, KNOWS
 - Reliably detects unused freq
 - Efficiently shares spectrum
- b-SMART: a distributed dynamic spectrum allocation algorithm

Improve Spectrum Efficiency in WLANs
- A dynamic channelization structure
 - Accommodates # of neighboring APs
 - Allocates bandwidth considering user distribution
- A scalable MAC design
 - Handles various user populations
 - Exploits rate diversity
Key Contribution

- The concept of Dynamic Spectrum Allocation
 - **KNOWS** exploits white spaces in *licensed bands*
 - Remarkable 200% throughput improvement as compared with fixed allocation schemes
 - **Dynamic channels** improve spectrum efficiency in *unlicensed bands*
 - Significantly improve system throughput and fairness in WLANs
Outline

- Introduction & Motivation
- Dissertation Overview
- KNOWS System Design and Evaluation
- New Channelization Structure for WLANs
- Conclusions
KNOWS: Problem Formulation

Resource
- White Space
- Cognitive Radios
 - Sensing
 - Reconfigurability

Goal
- Support Data Networking in the TV bands

Functionality
- Robust White Space Detection
- Dynamic Access to White Space

Features
- Simple, distributed
- Efficient, practical
White Spaces in TV bands

- Open TV channel 21-51
 - 512 MHz ~ 698 MHz
- Unlicensed in 2009
- Low frequency band
- Primary users
- Dynamic
- Fragmented
- Uneven size

![Diagram of frequency spectrum with "White spaces" highlighted]
KNOWS Design Overview

Physical-layer Capability

- Spectrum sensing
 - Every 30min required by FCC
- Highly reconfigurable
 - Frequency, bandwidth, power
- How many transceivers?
 - **ONE**
- **Design highlights**
 - One scanner/receiver
 - One transceiver

MAC-layer Function

- Collaborative sensing
- Parallelism & connectivity
- Adaptive bandwidth
- **Design highlights**
 - **CMAC:**
 - Based on a control channel
 - Spectrum Allocation Table
 - **b-SMART:** distributed dynamic spectrum allocation algorithm

Hardware Platform

- Scanner/Receiver
 - Scan: 400MHz ~ 928MHz
 -Recv: 900 ISM band, 5MHz
- Reconfigurable transceiver
 - Can dynamically adjust channel-width and center-frequency from 400MHz to 928MHz
 - Contiguous 5, 10, 20, 40 MHz
 - Power control

Transceiver can tune to contiguous spectrum bands only!
KNOWS Architecture

Network Layer (TCP/IP)

MAC (Medium Access Control)

b-SMART (Spectrum Allocation Engine)

Spectrum Allocation Table

PHY Layer

Reconfiguration Interface

Reconfigurable Radio

Scanner Receiver
KNOWS Architecture

Network Layer (TCP/IP)

CMAC (Medium Access Control)

b-SMART (Spectrum Allocation Engine)

Spectrum Allocation Table

PHY Layer

Reconfiguration Interface

Reconfigurable Radio

Scanner Radio

Next!
CMAC Overview

- **RTS**
 - Indicates intention for transmitting
 - Contains suggestions for available time-spectrum block (b-SMART)

- **CTS**
 - Spectrum selection (received-based)
 - Announces selected time-spectrum block \((f, \Delta f, t, \Delta t)\)

- **DTS**
 - Data Transmission reSerVation
 - Announces reserved time-spectrum block to neighbors of sender
The above depicts a possible Spectrum Allocation Table

1) Primary users (fragmentation)
2) In multi-hop → neighbors have different views
b-SMART

• Which time-spectrum block should be reserved...?
 ◦ \((f, \Delta f, t, \Delta t)\) How long...? How wide...?
• b-SMART (distributed spectrum allocation over white spaces)
• Design Principles

1. Try to assign each flow blocks of bandwidth \(B/N\)

\[B: \text{Total available spectrum}\]
\[N: \text{Number of disjoint flows}\]

2. Choose optimal transmission duration \(\Delta t\)

Long blocks: Higher delay

Short blocks: More congestion on control channel
b-SMART

- Upper bound $T_{\text{max}} \approx 10\text{ms}$ on maximum block duration
- Nodes always try to send for T_{max}

1. Find bandwidth Δf, for which the time used to out packets in current queue is closest to T_{max}

2. If $\Delta f \geq \lfloor B/N \rfloor$ then $\Delta f := \lfloor B/N \rfloor$

3. Find placement of $(\Delta f, \Delta t)$ block that minimizes finishing time and non-overlap with any other block

4. If no such block can be placed due to prohibited bands then $\Delta f := \Delta f / 2$
KNOWS: Performance Evaluation

- Simulate in QualNet
- Total 80MHz, 1MHz to 1.2Mbps
- Bandwidth: 5, 10, 20, 40 MHz
- Control channel: 5MHz
- Switch overhead: 50 µs
- Backlogged UDP flows, and TCP flows
KNOWS in Single Hop Network

Aggregate Throughput of Disjoint UDP flows

Throughput (Mbps)

of flows

KNOWS significantly outperforms systems based on fixed allocations!
KNOWS in Chain Network

KNOWS significantly improve throughput and reduces interference.
KNOWS Summary

- KNOWS: hardware-software system
 - Detect unoccupied frequencies in licensed TV bands
 - Support dynamic spectrum allocation using b-SMART

- Performance Evaluation
 - Analysis results match simulation results
 - Quantify the effect of fragmentation, traffic type, application type, multiple-hop network, routing protocols, mobility
Outline

- Introduction & Motivation
- Dissertation Overview
- KNOWS System Design and Evaluation
- New Channelization Structure for WLANs
- Conclusions
Fixed Channels in WLANs

Unbalanced Traffic Distribution
- AP usage in WLANs tends to be unbalanced
- User populations served by APs fluctuate considerably

Limitations of Fixed Channels
- Limit Network Capacity
 - # of neighboring APs is small
- Cause Interference
 - # of neighboring APs is large
- Deteriorate Per-client Fairness
Dynamic Channelization Structure

The key idea:

- Dynamically create suitable # of channels
 - Accommodate # of neighboring APs
- Adaptively adjust channel bandwidth
 - Consider user/traffic distribution

Yuan Yuan, Paramvir Bahl, Ranveer Chandra, Thomas Moscibroda and Yunnan Wu, *UnChannelize the Channels in WLANs*. Proceedings of ACM MobiCom Poster, Montreal, Canada 2007
Simulation Study in Large Scale Offices

Qualnet Settings:
- IBM trace data, 50 APs
- 1000m x 1000m flat
- 80MHz spectrum,
- Switch overhead: 50us
- 1 MHz -> 1.2 Mbps

- **GreedyRaising**: enables dynamic channels
- **RaC**: channel selection algorithm based on fixed channels
Outline

- Introduction & Motivation
- Dissertation Overview
- KNOWS System Design and Evaluation
- New Channelization Structure for WLANs
- Conclusions
Spectrum Shortage Problem

- A critical problem to solve to support fast growth of wireless technologies

Key Contribution

- Dynamic Spectrum Allocation significantly improves spectrum utilization and efficiency
 - KNOWS exploits white spaces in licensed bands
 - Dynamic channels improve spectrum efficiency in unlicensed bands
Future Work

- Deploy KNOWS system, measure performance and further improve the design
- Further study performance of dynamic channels
- Apply Dynamic Spectrum Allocation in market-based approach
 - Maximize revenue
 - Reduce interference
Enabling Dynamic Spectrum Allocation in Cognitive Radio Networks
Yuan Yuan
Ph.D defense

QUESTIONS?